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Abstract—Wind energy is scheduled on the power grid using
0-6 hour ahead forecasts generated from computer simulations
or historical data. When the forecasts are inaccurate, control
room operators use their expertise, as well as the actual
generation from previous days, to estimate the amount of
energy to schedule. However, this is a challenge, and it would
be useful for the operators to have additional information they
can exploit to make better informed decisions. In this paper, we
use techniques from time series analysis to determine if there
are motifs, or frequently occurring diurnal patterns in wind
generation data. Using data from wind farms in Tehachapi Pass
and mid-Columbia Basin, we describe our findings and discuss
how these motifs can be used to guide scheduling decisions.
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I. INTRODUCTION

With renewable resources, such as wind, providing an in-
creasing percentage of our energy requirements, integrating
them into the power grid is becoming challenging. Wind is
an intermittent resource; control room operators typically use
0-6 hour ahead forecasts to determine the amount of energy
to schedule for the hours ahead. However, when the forecasts
are inaccurate, the operators consider the actual generation
in the previous hours and days, and use their experience and
expertise to estimate the energy they should schedule.

In discussions on scheduling wind resources with oper-
ators at Southern California Edison, we had observed that
there appeared to be a diurnal pattern in the generation for
the previous days. A closer examination of historical data
confirmed the presence of patterns. The generation may be
low and flat on days with little wind, or it may be high
in the early hours, drop down to near zero by noon, and
rise again in the late evening. A similar observation was
also made by operators at California Independent System
Operator (CaISO), who, on days when the actual generation
deviates from the forecast, use the pattern for the day thus
far to find matches to patterns from previous days, which
are then used to guide the amount of energy scheduled.

In this paper, we use time series analysis to identify these
diurnal patterns, referred to as motifs, or primitive shapes [1].
Our goal is to ascertain if there is a limited number of motifs
for the wind generation at a site and determine ways to
exploit these motifs so operators can make better informed
scheduling decisions. While many ideas have been proposed

to improve scheduling, to the best of our knowledge, this is
the first application of the use of machine learning to find
motifs in wind generation data.

II. DESCRIPTION OF THE DATA

We conduct our analysis using data from two regions - the
Tehachapi Pass in Southern California, which connects to
the grid through Southern California Edison (SCE), and the
Columbia Basin region on the Oregon-Washington border,
whose wind farms form part of the Bonneville Power Ad-
ministration (BPA) balancing area. We refer to these datasets
as the SCE and BPA data, respectively.

A. SCE data

The SCE dataset (Figure 1) is the smaller dataset, with
data for 2007-2008 sampled at 15 minute intervals for the
Vincent and Antelope regions. As these regions are close
by, their wind generation is very similar, and we consider
the sum of the generation in our analysis. A quality check
indicated a few small negative values for the generation at
Antelope; these were set to zero before being combined
with the value from Vincent. Note that the maximum wind
generation over the two year period is constant.

Figure 2 shows the wind generation for SCE for a week
in June, 2007. In this short segment of the data, there are
two discernible patterns. The generation on June 1, 2, 3, and
7 starts high at midnight, drops by the middle of the day and
then rises again in the afternoon. In contrast, the generation
on June 4, 5, and 6, tends to remain at a consistent high
level, though there is variation within each day.

B. BPA data

The BPA data (Figure 3), available for the period 2007-
2011, are sampled at 5 minute intervals. There are missing
values in the data - values missing for one or two consecutive
intervals were filled-in using interpolation, while longer
periods were replaced by “-9999” to indicate such values for
future processing. Note that the maximum wind generation
over the five year period has increased substantially from
nearly 700 MW in 2007 to 3500 MW in 2011.

Figure 4 shows the wind generation for BPA for a week
in June 2011. In this segment, we see more variation than in
the segment from SCE data. June 5 starts off near zero and
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Figure 1. Wind generation in the Vincent and Antelope regions of the
Tehachapi Pass, Southern California, 2007-2008.
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Figure 2. A week-long segment for wind generation: SCE, June 2007.

in the late evening increases to a moderate level (relative to
the peak). June 1 is similar, but is shifted in the y-axis. June
2 and 7 increase in early morning to a high flat and drop by
late evening. June 3 and 4 both start off at a moderate level,
drop to near zero, and then increase again. However, June
4 appears to be a slightly shifted version of June 3. Finally,
the wind generation on June 6 varies considerably, making
it harder to identify a pattern.

III. ANALYSIS APPROACH

Our goal in the analysis is to determine if there are
recurring diurnal motifs in the wind generation data so
control room operators can exploit them in scheduling. We
consider the wind generation data as a time series, or an
ordered set of m real-valued variables

T = t1, . . . , tm (1)

For the SCE data, m = 70176 (731 days) and for the BPA
data, M = 525888 (1826 days). A subsequence S, of length
n, is a subset of contiguous values

S = ta, . . . , ta+n−1 (2)

from the series T . As we are interested in diurnal patterns,
the value of n is chosen so a subsequence spans a day, where
ta corresponds to mid-night and ta+n−1 corresponds to the
last time interval for which data are available for that day.
Thus, for SCE, with the sampling rate of every 15 minutes,
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Figure 3. Wind generation in the mid-Columbia Basin region in the
Oregon-Washington border, 2007-2011.
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Figure 4. A week-long segment for wind generation: BPA, June 2011.

this is hour 23 minute 45 of the day, while for the BPA
data sampled at every 5 minutes, this corresponds to hour
23 minute 55 of the day. For a subsequence to be considered
a motif, it has to occur frequently enough in the time series.
We will define this more precisely later in the paper.

Our analysis approach has two parts - the first represents
the time series in a form more suitable for the detection of
motifs and the second identifies the motifs in the data.

A. Representation of the time series

Given our time series data, it is possible to use the original
data to identify the motifs; however, there are several issues
with this. First, the data are noisy, and the high-frequency
components in the signal can result in a large Euclidean
distance between similar subsequences. Second, each day of
SCE and BPA wind generation is represented by 96 and 288
values, respectively. As the data are high-dimensional, we
need to map the data into a lower dimensional space, so the
concept of nearest neighbors in finding similar subsequences
can be meaningful [2]. Third, the increasing installed wind
generation at BPA from 2007 through 2011 makes it difficult
to relate a pattern in the early years to a similar pattern in
the later years.

We next discuss how we address these issues, borrowing
ideas from the work of Eamonn Keogh et al., in particu-
lar [1], and modifying them suitably for our datasets.



• Scaling the data: To account for the increasing in-
stalled capacity at BPA, we scale the 2007-2011 data
by the actual installed capacity at any time, a number
which is provided by BPA [3]. Once the actual genera-
tion from a new wind facility exceeds half its pending
nameplate capacity, the installed capacity of the wind
farms in the BPA balancing area is increased by the
full nameplate capacity of the new facility. Since this is
an approximation to the actual generating capacity for
any day, it is possible for the maximum value of the
scaled wind generation to be greater than 1.0, though
not by much, as the installed capacity increases slowly.
This scaling also provides us the maximum distance
between any two diurnal patterns, which is the distance
between a day with no wind generation and a day
with the maximum wind generation for all hours in the
day. We can use this maximum to set an appropriate
threshold which determines when two subsequences are
considered similar. For this reason, we also scale the
wind generation for SCE by its maximum, even though
the installed capacity does not change over the two
years used in this study.

• Piecewise aggregate representation (PAA): Follow-
ing [1], we next discretize the scaled data using piece-
wise aggregate approximation (PAA) [4], [5]. In this
representation, each subsequence of length n (Equa-
tion 2), is transformed into a w-dimensional space by
replacing n/w consecutive values by their mean. In our
work, we choose w = 24 to correspond to the hours in
a day. Thus, for the BPA data, we average 288/24 = 12
consecutive values, while for the SCE data, we average
96/24 = 4 values. This essentially approximates the
original scaled time series with a linear combination
of box basis functions [1], with the width of each
box being an hour. By choosing to describe a day
with 24 values, we obtain a sufficient reduction in
dimensionality, without oversmoothing the data and
causing loss of information during wind ramps, which
are events where the generation changes by a large
amount in a short time. This aggregation also reduces
the noise in the original scaled data.

• Symbolic representation (SYM): Next, we create a
discrete representation where the data are described
using a few distinct symbolic values. In [1], the sym-
bolic values are obtained by dividing the values of the
time series into equiprobable bins as it allows the use
of hash tables to speed up the matching process. The
equiprobable bins are calculated assuming that the data
follow a Gaussian distribution, which is true for most
normalized time series. However, if the time series is
almost constant (that is, has a fixed value corrupted by
noise), the standard deviation can be quite small, and
normalization by subtracting the mean and dividing by
the standard deviation only amplifies the noise [6]. Our

two time series have a large number of values near zero,
and the resulting standardized time series do not have
a Gaussian distribution. Hence, the approach in [1] is
not directly applicable. Further, as we are matching one
day to another, not matching all subsequences, we need
fewer comparisons, and the efficiencies resulting from
the use of a hash table are not essential in our problem.
In light of this, we may well question the need for
this additional symbolic representation. We found that
this transformation can be helpful in two ways. First,
it allows us to map two days with slightly differing
wind generation in each of the 24 hours to the same
discrete symbolic representation, enabling them to be
identified as a match, while two other days which have
the same difference all occurring in one hour, map
to two different symbolic representations. Second, the
symbolic representation allows us to include domain
information in the analysis. We found that since there
were many days with relatively low wind generation
(less than 10% of peak for most of the day), we could
capture the variations in the patterns at the low end by
using more bins at the low end. This would allow us to
distinguish a pattern with near zero generation for 24
hours from a pattern which started at 20% generation
and slowly reduced to zero over 24 hours. Also, at the
high end, we realized that the variations did not matter
as much, and broader bins would suffice.
To accommodate this, we divided our range into 10
bins, with the width of the smallest bin starting at δ
and increasing by an additive factor of α each time.
Thus, the bin widths for b bins are:

δ, (1 + α)δ, (1 + 2α)δ, . . . , (1 + (b− 1)α)δ (3)

We chose α = 0.1 and calculated δ assuming b =
10 bins spanning the range [0,1.0]. Any scaled wind
generation values larger than 1.0 were mapped to the
last bin. For ease of calculation, we represented the bins
using integers, not symbols, with the distance between
two bins being the difference of their integer values.

Figure 5 shows the scaled original, the PAA, and the SYM
representations for the wind generation for June 1, 2011, for
BPA. The horizontal lines indicate the bin boundaries for the
SYM representation.

The combined PAA followed by SYM transformation is
referred to as Symbolic Aggregate ApproXimation (SAX)
and has been shown to be at least as good as other well
known representations, such as discrete wavelet transforms
and discrete Fourier transforms [7]. We considered it in our
work as it is simple and provides a good representation for
the patterns we see intuitively in the wind generation data.

B. Finding the motifs

Once we have the original time series converted into the
reduced dimensional PAA and SAX representations, there
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Figure 5. The wind generation for June 1, 2011, BPA, showing the scaled
original and PAA representations. The dashed horizontal lines indicate
the bin boundaries used for SYM. Based on this, the 24-letter SAX
representation for this day would be 2-3-3-2-3-3-3-3-3-3-3-3-3-3-4-4-5-5-
6-6-7-7-8-6.

are several ways in which we can find the motifs, or the fre-
quently occurring subsequences, in the data. We considered
two approaches. The first was the method proposed in [1]
for finding the most frequent motif. This approach requires
the setting of a range R, which is a positive real number,
such that if the Euclidean distance D(Si, Sj) between two
subsequences Si and Sj is less than R, then Sj is a matching
subsequence to Si. For both PAA and SAX, we selected
R to be 10% of the maximum possible distance between
subsequences. Once the most frequent motif, which is the
subsequence with the largest number of matches within R,
was obtained, the motif and all its matches were removed
from consideration and the process repeated to find the next
most frequently occurring motif, and so on. We also included
a constraint that for a subsequence to be considered a motif,
there should be atleast 5 matches to that subsequence.

Our second approach to finding the motifs was to cluster
the days in the time series. Note that the concern raised in [8]
about clustering subsequences being meaningless does not
apply in our case as we are interested in non-overlapping
subsequences. We consider the sample-preserved k-median
clustering [9], an Expectation-Maximization (EM) algo-
rithm, in our work. This tries to find k existing samples as
cluster centers such that the sum of the distances from all
samples to their closest cluster center is minimized. First, a
symmetric distance matrix D is calculated where the element
at the i-th row and the j-th column is D(Si, Sj). Since
the clusters are assigned using a distance matrix, this gives
us the flexibility of choosing different distance metrics for
our datasets. Then, given the number of clusters and the
initial cluster centers, the algorithm alternates between an
expectation (E) step and a maximization (M) step. In the
E step, all samples are assigned to their nearest sample-
preserved median. In the M step, the medians are reevaluated
by choosing the samples that are closest to all others in
the same clusters. The algorithm converges when the cluster
assignments do not change across iterations.

Figure 6. Cluster centers for BPA: PAA (left) and SAX (right); cluster 1
is at bottom of plot and cluster 8 is at the top.

Figure 7. Cluster centers for SCE: PAA (left) and SAX (right); cluster 1
is at bottom of plot and cluster 8 is at the top.

IV. EXPERIMENTAL RESULTS

We next present the results obtained using the motif
finding algorithms on the PAA and SAX representations of
our two time series datasets. We focus on the results from
clustering, as the results using the motif finding algorithm
in [1] are very similar. However, in the latter, not all days
may be assigned to a motif, for example, if they are not
within a distance of R of any other day, or they form a
matching group of subsequences with less than 5 members.

In our work, we consider 8 clusters, as this was the
number suggested by the motif finding algorithm of Lin et
al. [1]. Figures 6 and 7 show the cluster centers for BPA
and SCE respectively. The number of days in each cluster is
summarized in Table I. The clusters for the PAA and SAX
representations are shown in Figures 8 and 9, for the BPA
and SCE data, respectively, in the same order as in Table I.
Each cluster has the 24 hours on the x-axis, with the y-axis
representing each day that belongs to the cluster. The color
represents the magnitude of wind generation for that day
and hour. The color palette for PAA and SAX are different
as the range of values are different. A cluster represents all
the days that have a similar motif.

These results show that there are indeed frequently occur-
ring subsequences, or motifs, in the wind generation data.
We also observe that the number of motifs is small and
the largest cluster for both BPA and SCE, using PAA and
SAX, is the one where the wind generation is quite small, as
indicated by the cluster with all dark blue generation. This
is also corroborated by the time series data themselves.

A closer inspection of the clusters and the number of days
in each indicates several differences between BPA and SCE,



Cluster BPA SCE
PAA SAX PAA SAX

8 184 (10.1%) 279 (15.3%) 173 (23.7%) 60 (8.2%)
7 170 (9.3%) 134 (7.3%) 58 (7.9%) 122 (16.7%)
6 151 (8.3%) 159 (8.7%) 72 (9.8%) 55 (7.5%)
5 170 (9.3%) 221 (12.1%) 71 (9.7%) 58 (7.9%)
4 121 (6.6%) 133 (7.3%) 61 (8.3%) 48 (6.6%)
3 274 (15.0%) 150 (8.2%) 50 (6.8%) 82 (11.2%)
2 179 (9.8%) 220 (12.0%) 45 (6.2%) 100 (13.7%)
1 577 (31.6%) 530 (29.0%) 201 (27.5%) 206 (28.2%)

Table I
CLUSTER SIZES (PERCENTAGES) FOR THE CLUSTERS IN FIGURES 8

AND 9 WHERE THE TOP CLUSTER IS CLUSTER 8.

and between the PAA and SAX representations. We expect
that the motifs would be different for SCE and BPA as the
two regions have very different terrain and meteorological
processes. For example, unlike BPA, SCE data have days
where the generation is low in the middle of the day, and
moderately high at the start and end of the day. We also
find that PAA and SAX tend to identify similar motifs,
though given the different representations, the clusters are
not identical. SAX appears to perform slightly better as it
finds clusters that are clearly different, while in the case of
PAA, it is unclear why some clusters (e.g., clusters 1 and
3 for both BPA and SCE) are different. We suspect that
the SYM discretization in the SAX representation groups
together subsequences which differ only slightly, so there is
greater similarity within a cluster and the clusters appear
very different from each other. For example, the cluster
centers for SCE in Figure 7, tend to be more on the blue
side for PAA representation, while the SAX representation
is more balanced between the blue and the red.

We next analyzed the clusters to determine if there is a
seasonal pattern to the motifs. For example, we found that
for SCE, cluster 1 (very low generation) is more frequent
in the winter (October-February), while cluster 8, with high
generation for all hours, is more frequent in spring (March-
May) and July. In addition to such insights, identification of
the motifs also helps operators in scheduling. For example,
if during the day, the operator finds that the forecast is
inaccurate, they can either compare the generation with the
existing motifs identified in the data, or find nearest matches
in historical data. This additional information could then be
used in estimating the wind power to be scheduled.

V. CONCLUSION

In this paper, we analyzed wind generation data to iden-
tify diurnal patterns, or motifs. Using time series from
two wind sites, we found that there is indeed a limited
number of motifs, though, as expected, these motifs may
be different across sites. The motifs provide insights into
the wind generation and can guide the wind energy to be

scheduled when the forecast is inaccurate. We will extend
this work by exploring how sensitive the results are to
different discretizations in the SYM approach, the choice of
clustering method, and the number of clusters. We will also
investigate if removing outliers from the data will improve
the clustering, and if it is possible to use weather conditions
to predict the motif, an idea that appears feasible given the
seasonal pattern among the motifs.
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Figure 8. Clusters identified in the BPA data: PAA (left column) and
SAX (right column) representations. The cluster sizes are listed in Table I.
A row represents a day and the color is the magnitude of the generation.
Color maps differ between PAA and SAX. Cluster 8 is at the top.

Figure 9. Clusters identified in the SCE data: PAA (left column) and
SAX (right column) representations. The cluster sizes are listed in Table I.
A row represents a day and the color is the magnitude of the generation.
Color maps differ between PAA and SAX. Cluster 8 is at the top.


